How to Set Up Xdebug with Laravel Herd and
PhpStorm on macOS

A complete, step-by-step guide to configure Xdebug for debugging Laravel applications using Herd
and PhpStorm.

Table of Contents

. Prerequisites
. Understanding the Setup
. Step 1: Configure Xdebug in Herd

. Step 3: Testing the Setup

1

2

3

4. Step 2: Configure PhpStorm

5

6. Common Issues and Solutions
7

. Tips and Best Practices

Prerequisites

macOS (Apple Silicon or Intel)

Laravel Herd installed and running
PhpStorm IDE

A Laravel project served by Herd

Basic knowledge of terminal commands

Understanding the Setup

Before diving in, it's important to understand how the components work together:

e Xdebug: PHP extension that enables debugging
e Herd: Manages PHP, Nginx, and serves your Laravel applications
e PhpStorm: Listens for debugging connections from Xdebug

e Browser Extension: Triggers Xdebug to activate for web requests

Key Concepts

1. PHP CLI vs PHP-FPM: Herd uses different PHP processes for command-line (CLI) and web
requests (FPM)

2. Debug Socket: Herd has separate sockets for normal and debug modes

3. Port Configuration: Xdebug connects to PhpStorm on port 9003 by default

Step 1: Configure Xdebug in Herd

1.1 Identify Your PHP Version and Architecture

First, determine your PHP version and Mac architecture:

Check PHP version
php -v

Check architecture (arm64 = Apple Silicon, x86 = Intel)
uname -m

1.2 Configure the Debug Configuration File

Herd includes Xdebug extensions but requires configuration. Edit the debug configuration file:

Open the debug.ini file for your PHP version
Replace '83' with your PHP version (82, 81, etc.)
nano ~/Library/Application\ Support/Herd/config/php/83/debug/debug.ini

Add the following configuration:

For Apple Silicon (M1/M2/M3)
zend_extension=/Applications/Herd.app/Contents/Resources/xdebug/xdebug-83-arm64.so

For Intel Mac, use this instead:
zend_extension=/Applications/Herd.app/Contents/Resources/xdebug/xdebug-83-x86.s0

xdebug.mode=debug,develop
xdebug.start_with_request=yes
xdebug.start_upon_error=yes
xdebug.client_host=127.0.0.1
xdebug.client_port=9003
xdebug.idekey=PHPSTORM

Important Notes:

e Replace 83 with your PHP version (e.g., 82 for PHP 8.2)
e Use arm64 for Apple Silicon or x86 for Intel

e Use 127.0.0.1 instead of localhost to avoid DNS resolution issues

1.3 Optional: Configure the Main php.ini (for CLI debugging)

If you also want to debug CLI commands (artisan, tests):

Open php.ini
nano ~/Library/Application\ Support/Herd/config/php/83/php.ini

Add the same Xdebug configuration as above.

1.4 Restart Herd

herd restart

After restarting, you should NOT see connection errors in the output. If you see errors, don't worry -
they appear because PhpStorm isn't listening yet.

1.5 Verify Xdebug Installation

Check if Xdebug is loaded
php -v
You should see "with Xdebug v3.x.x"

View Xdebug configuration
php --ri xdebug | grep -E "client_host|client_port| mode"

You should see:

xdebug.mode => debug,develop
xdebug.client_host => 127.0.0.1
xdebug.client_port => 9003

Step 2: Configure PhpStorm

2.1 Configure PHP Interpreter
1. Open PhpStorm
2. Go to Settings/Preferences (Cmd +,)
3. Navigate to PHP

4. Next to CLI Interpreter, click the three dots (...)

5. Click the + button
6. Select Other Local...

7. Browse to Herd's PHP binary: (Or let PhpStorm auto-detect it)
/Users/[your-username]/Library/Application Support/Herd/bin/php83

8. Verify that PhpStorm shows:

o PHP version: 8.3.x
o Xdebug: 3.3.x

9. Click OK

2.2 Configure Server
This is crucial and often the source of problems.

1. In Settings, go to PHP Servers
2. Click + to add a new server

3. Configure:
o Name: your-domain.test (e.g., myapp.test)

o Host: your-domain.test (Ssame as name)
Port: 443 (if using HTTPS) or 80 (if using HTTP)
Debugger: Xdebug

Use path mappings: Leave UNCHECKED

(0]

(0]

(0]

Critical: Port Configuration

e If your Herd site uses HTTPS (most do by default), use port 443
e [fusing HTTP, use port 80
e To check: look at your browser URL - https:// = port 443, http:// = port 80

1. Click Apply

Pro Tip: If you're unsure about the port, delete the server configuration and PhpStorm will auto-
detect it on the first connection and suggest the correct port (usually 443).

2.3 Configure Debug Settings

1. Goto PHP Debug

2. In the Xdebug section, verify:
o Debug port: 9003

o Can accept external connections: Can be checked

o Force break at first line when no path mapping specified: UNCHECKED

o Force break at first line when a script is outside the project: UNCHECKED
These last two options prevent PhpStorm from stopping at Herd's internal files.

1. Click OK

2.4 Start Listening for Debug Connections

In the PhpStorm toolbar (top right), find the phone icon () and click it to activate "Start Listening for
PHP Debug Connections".

The icon should turn green when active.

Alternative: Go to Run Start Listening for PHP Debug Connections

Step 3: Testing the Setup

3.1 CLI Debugging (Quick Test)

Create a simple test file:

<?php
// test-xdebug.php

echo "Starting Xdebug test..\n";

$name = "Developer"; // Place breakpoint here
$message = "Hello " . $name;

echo $message . "\n";
echo "Test finished.\n";

1. Place a breakpoint on the line $name = "Developer"; (click in the left margin)
2. Save the file (Cmd +5S)
3. Ensure PhpStorm is listening (green phone icon)

4. Run from terminal:
php test-xdebug.php

Expected Result:

e Terminal pauses
e PhpStorm comes to the foreground
e The breakpoint line is highlighted in blue

e Variables panel shows values

If this works, Xdebug is configured correctly!

3.2 Web Debugging

For debugging web requests, you need to trigger Xdebug from the browser.

Option A: Browser Extension (Recommended)

1. Install Xdebug Helper:
o Chrome: Xdebug Helper

o Firefox: Xdebug Helper

2. Configure the extension:
o Click the extension icon

o Go to Options/Settings
o Set IDE Key to PHPSTORM
o Save

3. Activate debugging:
o Click the extension icon

o Select Debug (icon turns green)
Option B: URL Parameter

Add this to your URL:

https://your-domain.test/your-route?XDEBUG_SESSION_START=PHPSTORM

3.3 Debug a Laravel Route

1. Open routes/web.php

2. Place a breakpoint inside a route:

Route::get('/test-debug', function () {
$data = "Testing Xdebug"; // Breakpoint here
return view('welcome', compact('data'));

i

1. Save the file(Cmd +S)
2. PhpStorm is listening (green icon)
3. Browser extension is active (green)

4. Visit the route: https://your-domain.test/test-debug
Expected Result:

e Browser page starts loading but pauses

https://chrome.google.com/webstore/detail/xdebug-helper/eadndfjplgieldjbigjakmdgkmoaaaoc
https://addons.mozilla.org/en-US/firefox/addon/xdebug-helper-for-firefox/

PhpStorm comes to foreground

Breakpoint line is highlighted

You can inspect all variables: $data, $request, etc.

Use controls: Resume (F9), Step Over (F8), Step Into (F7)

Common Issues and Solutions

Issue 1: "Could not connect to debugging client" Errors
Symptoms: Errors appear when running herd restart
Cause: Xdebug tries to connect but PhpStorm isn't listening yet

Solution: These errors during Herd startup are normal and harmless. They only matter if they
appear when actually trying to debug.

Issue 2: CLI Debugging Works, Web Debugging Doesn't
Symptoms: Breakpoints work with php artisan or terminal commands, but not from browser
Root Causes:

1. Wrong port in PhpStorm server configuration (most common)
2. PHP-FPM not loading Xdebug
3. Browser extension not configured properly

Solutions:
A. Fix Server Port Configuration

e If using HTTPS (default for Herd), set port to 443
e Ifusing HTTP, set port to 80

e To auto-detect: Delete the server in PhpStorm, then debug from browser - PhpStorm will suggest
the correct configuration

B. Verify PHP-FPM Loads Xdebug

Create public/info.php :
<?php phpinfo();

Visit https://your-domain.test/info.php and search for "xdebug".

If you DON'T see an Xdebug section, PHP-FPM isn't loading it. Verify the debug.ini file path and restart
Herd.

C. Check Browser Extension

e Verify the extension is set to PHPSTORM (not YOUR-NAME or other values)
e Check cookies: Open DevTools Application Cookies
e You should see XDEBUG_SESSION=PHPSTORM

Issue 3: PhpStorm Doesn't Stop at Breakpoints
Symptoms: Everything seems configured, but PhpStorm doesn't react
Solutions:

A. Verify PhpStorm is Actually Listening

[sof -i :9003

You should see PhpStorm listening on port 9003. If not, restart PhpStorm.
B. Check Debug Settings

e Settings PHP Debug

e Verify "lgnore external connections through unregistered server configurations" is UNCHECKED
C. Accept First Connection

e The first time Xdebug connects, PhpStorm shows a popup: "Incoming connection from Xdebug"
e Click Accept
e This popup might be hidden behind other windows - check!

D. Enable Xdebug Logging

Add to debug.ini :
xdebug.log=/tmp/xdebug.log
Restart Herd, then check the log:

tail -f /tmp/xdebug.log

Issue 4: Breakpoint Stops at Herd's Internal Files

Symptoms: Debugger stops at files like dump-loader.php instead of your code
Solution:

e Settings PHP Debug
¢ Uncheck: "Force break at first line when no path mapping specified"

e Uncheck: "Force break at first line when a script is outside the project”

Issue 5: Using localhost Instead of IP
Symptoms: Connection errors even though everything is configured

Solution: Always use 127.0.0.1 instead of localhost in the Xdebug configuration. macOS can have
DNS resolution issues with localhost .

Tips and Best Practices

1. Debugging Artisan Commands

Use Herd's debug command:
herd debug artisan your:command
Or set environment variable:

XDEBUG_CONFIG="idekey=PHPSTORM" php artisan your:command

2. Debugging PHPUnit Tests
herd debug vendor/bin/phpunit

Or in PhpStorm, create a PHPUnit run configuration with the Herd PHP interpreter.

3. Conditional Breakpoints

Right-click a breakpoint Add condition:
$user->id == 123

PhpStorm will only stop when the condition is true.

4. Evaluate Expressions

While debugging, select any expression in your code, right-click Evaluate Expression (or press Alt
+F8).

5. Quick Debugging Toggle
Create a keyboard shortcut for "Toggle Line Breakpoint™:

e Settings Keymap Search for "Toggle Line Breakpoint"
e Setto Cmd+F8 for quick breakpoint toggling

6. Xdebug Performance Impact

Disable Xdebug when not needed to maintain performance:

Comment out the zend_extension line in debug.ini
Or use Herd Pro's auto-detection feature

With Herd Pro, Xdebug only activates when breakpoints are detected, keeping your app fast.

7. Multiple Projects
If working on multiple projects:

e Each project can have different server configurations in PhpStorm

e The server name should match the domain: projecti.test, project2.test , etc.

8. Remote Debugging (Optional)
If debugging from a different machine:

In debug.ini :
xdebug.client_host=192.168.x.x # IP of machine running PhpStorm

Also configure your firewall to allow connections on port 9003.

Troubleshooting Checklist

When debugging doesn't work, verify ALL of these:
Herd Configuration:

debug.ini exists and contains correct configuration

Correct architecture (arm64/x86) specified
xdebug.client_host=127.0.0.1 (not localhost)
xdebug.client_port=9003

Herd restarted after config changes
PhpStorm Configuration:

PHP interpreter shows Xdebug loaded

Server name matches domain

Server port is correct (443 for HTTPS, 80 for HTTP)
Path mappings are disabled (unchecked)

Debug port is 9003

Force break options are unchecked

PhpStorm is listening (green phone icon)
Browser/Testing:

Browser extension installed and configured
Extension IDE key is "PHPSTORM"
Extension is activated (green icon)
Breakpoint is placed and file is saved
Cookie XDEBUG_SESSION=PHPSTORM exists

Verification:

php -v shows Xdebug loaded

Isof -i :9003 shows PhpStorm listening

phpinfo() from browser shows Xdebug section
CLI debugging works (php test-file.php)

Conclusion

Setting up Xdebug with Laravel Herd and PhpStorm involves configuring three main components:

1. Xdebug (via Herd's debug.ini)
2. PhpStorm (interpreter, server, debug settings)

3. Trigger mechanism (browser extension or URL parameter)

The most common pitfall is the server port configuration - always verify you're using the correct
port (443 for HTTPS, 80 for HTTP).

Once configured correctly, you'll have a powerful debugging environment that works seamlessly for
both CLI and web debugging.

Happy debugging!

Additional Resources

e Official Xdebug Documentation
e Laravel Herd Documentation
e PhpStorm Debugging Guide

e Xdebug Helper Chrome Extension

Last Updated: December 2024

Tested With: Laravel Herd 1.x, PhpStorm 2024.x, PHP 8.3, macOS Sonoma

https://xdebug.org/docs/
https://herd.laravel.com/docs
https://www.jetbrains.com/help/phpstorm/debugging.html
https://chrome.google.com/webstore/detail/xdebug-helper/eadndfjplgieldjbigjakmdgkmoaaaoc

