
How to Set Up Xdebug with Laravel Herd and
PhpStorm on macOS
A complete, step-by-step guide to configure Xdebug for debugging Laravel applications using Herd
and PhpStorm.

Table of Contents

1. Prerequisites

2. Understanding the Setup

3. Step 1: Configure Xdebug in Herd

4. Step 2: Configure PhpStorm

5. Step 3: Testing the Setup

6. Common Issues and Solutions

7. Tips and Best Practices

Prerequisites

macOS (Apple Silicon or Intel)

Laravel Herd installed and running

PhpStorm IDE

A Laravel project served by Herd

Basic knowledge of terminal commands

Understanding the Setup

Before diving in, it's important to understand how the components work together:

Xdebug: PHP extension that enables debugging

Herd: Manages PHP, Nginx, and serves your Laravel applications

PhpStorm: Listens for debugging connections from Xdebug

Browser Extension: Triggers Xdebug to activate for web requests

Key Concepts

1. PHP CLI vs PHP-FPM: Herd uses different PHP processes for command-line (CLI) and web
requests (FPM)

2. Debug Socket: Herd has separate sockets for normal and debug modes

3. Port Configuration: Xdebug connects to PhpStorm on port 9003 by default

Step 1: Configure Xdebug in Herd

1.1 Identify Your PHP Version and Architecture

First, determine your PHP version and Mac architecture:

Check PHP version
php -v

Check architecture (arm64 = Apple Silicon, x86 = Intel)
uname -m

1.2 Configure the Debug Configuration File

Herd includes Xdebug extensions but requires configuration. Edit the debug configuration file:

Open the debug.ini file for your PHP version
Replace '83' with your PHP version (82, 81, etc.)
nano ~/Library/Application\ Support/Herd/config/php/83/debug/debug.ini

Add the following configuration:

For Apple Silicon (M1/M2/M3)
zend_extension=/Applications/Herd.app/Contents/Resources/xdebug/xdebug-83-arm64.so

For Intel Mac, use this instead:
zend_extension=/Applications/Herd.app/Contents/Resources/xdebug/xdebug-83-x86.so

xdebug.mode=debug,develop
xdebug.start_with_request=yes
xdebug.start_upon_error=yes
xdebug.client_host=127.0.0.1
xdebug.client_port=9003
xdebug.idekey=PHPSTORM

Important Notes:

Replace 83 with your PHP version (e.g., 82 for PHP 8.2)

Use arm64 for Apple Silicon or x86 for Intel

Use 127.0.0.1 instead of localhost to avoid DNS resolution issues

1.3 Optional: Configure the Main php.ini (for CLI debugging)

If you also want to debug CLI commands (artisan, tests):

Open php.ini
nano ~/Library/Application\ Support/Herd/config/php/83/php.ini

Add the same Xdebug configuration as above.

1.4 Restart Herd

herd restart

After restarting, you should NOT see connection errors in the output. If you see errors, don't worry -
they appear because PhpStorm isn't listening yet.

1.5 Verify Xdebug Installation

Check if Xdebug is loaded
php -v
You should see "with Xdebug v3.x.x"

View Xdebug configuration
php --ri xdebug | grep -E "client_host|client_port|mode"

You should see:

xdebug.mode => debug,develop
xdebug.client_host => 127.0.0.1
xdebug.client_port => 9003

Step 2: Configure PhpStorm

2.1 Configure PHP Interpreter

1. Open PhpStorm

2. Go to Settings/Preferences (Cmd + ,)

3. Navigate to PHP

4. Next to CLI Interpreter, click the three dots (...)

5. Click the + button

6. Select Other Local...

7. Browse to Herd's PHP binary: (Or let PhpStorm auto-detect it)

/Users/[your-username]/Library/Application Support/Herd/bin/php83

8. Verify that PhpStorm shows:

PHP version: 8.3.x

Xdebug: 3.3.x ✓

9. Click OK

2.2 Configure Server

This is crucial and often the source of problems.

1. In Settings, go to PHP → Servers

2. Click + to add a new server

3. Configure:
Name: your-domain.test (e.g., myapp.test)

Host: your-domain.test (same as name)

Port: 443 (if using HTTPS) or 80 (if using HTTP)

Debugger: Xdebug

☐ Use path mappings: Leave UNCHECKED

Critical: Port Configuration

If your Herd site uses HTTPS (most do by default), use port 443

If using HTTP, use port 80

To check: look at your browser URL - https:// = port 443, http:// = port 80

1. Click Apply

Pro Tip: If you're unsure about the port, delete the server configuration and PhpStorm will auto-
detect it on the first connection and suggest the correct port (usually 443).

2.3 Configure Debug Settings

1. Go to PHP → Debug

2. In the Xdebug section, verify:
Debug port: 9003

☑ Can accept external connections: Can be checked

☐ Force break at first line when no path mapping specified: UNCHECKED

☐ Force break at first line when a script is outside the project: UNCHECKED

These last two options prevent PhpStorm from stopping at Herd's internal files.

1. Click OK

2.4 Start Listening for Debug Connections

In the PhpStorm toolbar (top right), find the phone icon (📞) and click it to activate "Start Listening for
PHP Debug Connections".

The icon should turn green when active.

Alternative: Go to Run → Start Listening for PHP Debug Connections

Step 3: Testing the Setup

3.1 CLI Debugging (Quick Test)

Create a simple test file:

<?php
// test-xdebug.php

echo "Starting Xdebug test...\n";

$name = "Developer"; // ← Place breakpoint here
$message = "Hello " . $name;

echo $message . "\n";
echo "Test finished.\n";

1. Place a breakpoint on the line $name = "Developer"; (click in the left margin)

2. Save the file (Cmd + S)

3. Ensure PhpStorm is listening (green phone icon)

4. Run from terminal:

php test-xdebug.php

Expected Result:

Terminal pauses

PhpStorm comes to the foreground

The breakpoint line is highlighted in blue

Variables panel shows values

If this works, Xdebug is configured correctly! ✓

3.2 Web Debugging

For debugging web requests, you need to trigger Xdebug from the browser.

Option A: Browser Extension (Recommended)

1. Install Xdebug Helper:
Chrome: Xdebug Helper

Firefox: Xdebug Helper

2. Configure the extension:
Click the extension icon

Go to Options/Settings

Set IDE Key to PHPSTORM

Save

3. Activate debugging:
Click the extension icon

Select Debug (icon turns green)

Option B: URL Parameter

Add this to your URL:

https://your-domain.test/your-route?XDEBUG_SESSION_START=PHPSTORM

3.3 Debug a Laravel Route

1. Open routes/web.php

2. Place a breakpoint inside a route:

Route::get('/test-debug', function () {
 $data = "Testing Xdebug"; // ← Breakpoint here
 return view('welcome', compact('data'));
});

1. Save the file (Cmd + S)

2. PhpStorm is listening (green icon)

3. Browser extension is active (green)

4. Visit the route: https://your-domain.test/test-debug

Expected Result:

Browser page starts loading but pauses

https://chrome.google.com/webstore/detail/xdebug-helper/eadndfjplgieldjbigjakmdgkmoaaaoc
https://addons.mozilla.org/en-US/firefox/addon/xdebug-helper-for-firefox/

PhpStorm comes to foreground

Breakpoint line is highlighted

You can inspect all variables: $data , $request , etc.

Use controls: Resume (F9), Step Over (F8), Step Into (F7)

Common Issues and Solutions

Issue 1: "Could not connect to debugging client" Errors

Symptoms: Errors appear when running herd restart

Cause: Xdebug tries to connect but PhpStorm isn't listening yet

Solution: These errors during Herd startup are normal and harmless. They only matter if they
appear when actually trying to debug.

Issue 2: CLI Debugging Works, Web Debugging Doesn't

Symptoms: Breakpoints work with php artisan or terminal commands, but not from browser

Root Causes:

1. Wrong port in PhpStorm server configuration (most common)

2. PHP-FPM not loading Xdebug

3. Browser extension not configured properly

Solutions:

A. Fix Server Port Configuration

If using HTTPS (default for Herd), set port to 443

If using HTTP, set port to 80

To auto-detect: Delete the server in PhpStorm, then debug from browser - PhpStorm will suggest
the correct configuration

B. Verify PHP-FPM Loads Xdebug

Create public/info.php :

<?php phpinfo();

Visit https://your-domain.test/info.php and search for "xdebug".

If you DON'T see an Xdebug section, PHP-FPM isn't loading it. Verify the debug.ini file path and restart
Herd.

C. Check Browser Extension

Verify the extension is set to PHPSTORM (not YOUR-NAME or other values)

Check cookies: Open DevTools → Application → Cookies

You should see XDEBUG_SESSION=PHPSTORM

Issue 3: PhpStorm Doesn't Stop at Breakpoints

Symptoms: Everything seems configured, but PhpStorm doesn't react

Solutions:

A. Verify PhpStorm is Actually Listening

lsof -i :9003

You should see PhpStorm listening on port 9003. If not, restart PhpStorm.

B. Check Debug Settings

Settings → PHP → Debug

Verify "Ignore external connections through unregistered server configurations" is UNCHECKED

C. Accept First Connection

The first time Xdebug connects, PhpStorm shows a popup: "Incoming connection from Xdebug"

Click Accept

This popup might be hidden behind other windows - check!

D. Enable Xdebug Logging

Add to debug.ini :

xdebug.log=/tmp/xdebug.log

Restart Herd, then check the log:

tail -f /tmp/xdebug.log

Issue 4: Breakpoint Stops at Herd's Internal Files

Symptoms: Debugger stops at files like dump-loader.php instead of your code

Solution:

Settings → PHP → Debug

Uncheck: "Force break at first line when no path mapping specified"

Uncheck: "Force break at first line when a script is outside the project"

Issue 5: Using localhost Instead of IP

Symptoms: Connection errors even though everything is configured

Solution: Always use 127.0.0.1 instead of localhost in the Xdebug configuration. macOS can have
DNS resolution issues with localhost .

Tips and Best Practices

1. Debugging Artisan Commands

Use Herd's debug command:

herd debug artisan your:command

Or set environment variable:

XDEBUG_CONFIG="idekey=PHPSTORM" php artisan your:command

2. Debugging PHPUnit Tests

herd debug vendor/bin/phpunit

Or in PhpStorm, create a PHPUnit run configuration with the Herd PHP interpreter.

3. Conditional Breakpoints

Right-click a breakpoint → Add condition:

$user->id == 123

PhpStorm will only stop when the condition is true.

4. Evaluate Expressions

While debugging, select any expression in your code, right-click → Evaluate Expression (or press Alt

+ F8).

5. Quick Debugging Toggle

Create a keyboard shortcut for "Toggle Line Breakpoint":

Settings → Keymap → Search for "Toggle Line Breakpoint"

Set to Cmd + F8 for quick breakpoint toggling

6. Xdebug Performance Impact

Disable Xdebug when not needed to maintain performance:

Comment out the zend_extension line in debug.ini
Or use Herd Pro's auto-detection feature

With Herd Pro, Xdebug only activates when breakpoints are detected, keeping your app fast.

7. Multiple Projects

If working on multiple projects:

Each project can have different server configurations in PhpStorm

The server name should match the domain: project1.test , project2.test , etc.

8. Remote Debugging (Optional)

If debugging from a different machine:

In debug.ini :

xdebug.client_host=192.168.x.x # IP of machine running PhpStorm

Also configure your firewall to allow connections on port 9003.

Troubleshooting Checklist

When debugging doesn't work, verify ALL of these:

Herd Configuration:

 debug.ini exists and contains correct configuration

 Correct architecture (arm64/x86) specified

 xdebug.client_host=127.0.0.1 (not localhost)

 xdebug.client_port=9003

 Herd restarted after config changes

PhpStorm Configuration:

 PHP interpreter shows Xdebug loaded

 Server name matches domain

 Server port is correct (443 for HTTPS, 80 for HTTP)

 Path mappings are disabled (unchecked)

 Debug port is 9003

 Force break options are unchecked

 PhpStorm is listening (green phone icon)

Browser/Testing:

 Browser extension installed and configured

 Extension IDE key is "PHPSTORM"

 Extension is activated (green icon)

 Breakpoint is placed and file is saved

 Cookie XDEBUG_SESSION=PHPSTORM exists

Verification:

 php -v shows Xdebug loaded

 lsof -i :9003 shows PhpStorm listening

 phpinfo() from browser shows Xdebug section

 CLI debugging works (php test-file.php)

Conclusion

Setting up Xdebug with Laravel Herd and PhpStorm involves configuring three main components:

1. Xdebug (via Herd's debug.ini)

2. PhpStorm (interpreter, server, debug settings)

3. Trigger mechanism (browser extension or URL parameter)

The most common pitfall is the server port configuration - always verify you're using the correct
port (443 for HTTPS, 80 for HTTP).

Once configured correctly, you'll have a powerful debugging environment that works seamlessly for
both CLI and web debugging.

Happy debugging! 🐛✨

Additional Resources

Official Xdebug Documentation

Laravel Herd Documentation

PhpStorm Debugging Guide

Xdebug Helper Chrome Extension

Last Updated: December 2024

Tested With: Laravel Herd 1.x, PhpStorm 2024.x, PHP 8.3, macOS Sonoma

https://xdebug.org/docs/
https://herd.laravel.com/docs
https://www.jetbrains.com/help/phpstorm/debugging.html
https://chrome.google.com/webstore/detail/xdebug-helper/eadndfjplgieldjbigjakmdgkmoaaaoc

